Properties of Arctic Clouds from Multiple Atmospheric Observatories

M. D. Shupe¹, V. P. Walden², P. M. Rowe², C. J. Cox², and D. D. Turner³

¹University of Colorado
²University of Idaho
³University of Wisconsin-Madison
Acknowledgments

• NOAA SEARCH program - Eureka

• NSF Arctic Natural Science - International Polar Year
 • University of Idaho - ARC 0632177
 • University of Colorado - ARC 0632187

• NSF Arctic Observing Network (AON)
 • University of Idaho - ARC 0856773
 • University of Colorado - ARC 0856559
 • University of Wisconsin-Madison - ARC 0904152

• Significant long-term investments in instrumentation development and facilities.
Goals and Objectives

• Understand both the *temporal* and *spatial* variability of cloud properties across the Arctic.

 • From *surface-based* instruments

 • Complement to satellite studies

• Study *macrophysical* and *microphysical* cloud properties, plus their *radiative* impact.
Arctic Observational Sites

- Stations are mainly in the Western Arctic
Arctic Observational Sites

- Stations are mainly in the Western Arctic

= “Super Site”
<table>
<thead>
<tr>
<th>Instruments</th>
<th>MWR</th>
<th>AERI</th>
<th>Ceilometer</th>
<th>MPL</th>
<th>DARE</th>
<th>HSRL</th>
<th>MMCR</th>
<th>Instrument Measurements</th>
<th>Sites</th>
<th>Pertinent Specifications</th>
<th>Derived Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td></td>
</tr>
<tr>
<td>Radiometer</td>
<td></td>
</tr>
<tr>
<td>Infrared</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td></td>
</tr>
<tr>
<td>Lidar</td>
<td></td>
</tr>
<tr>
<td>Lidar</td>
<td></td>
</tr>
<tr>
<td>Lidar</td>
<td></td>
</tr>
<tr>
<td>Lidar</td>
<td></td>
</tr>
<tr>
<td>Radar</td>
<td></td>
</tr>
</tbody>
</table>

MVR	T₈	IR radiance T₈	Backscatter	Backscatter	Backscatter	Backscatter	Backscatter	Reflectivity,	Barrow,	45-90 m	Presence,
	T₈	IR radiance T₈	Backscatter	Backscatter	Backscatter	Backscatter	Backscatter	Reflectivity,	Barrow,	45-90 m	Presence,
SHEBA	Eureka	Barrow, Summit	Eureka	Barrow, SHEBA	Barrow, NY, Alesund	Barrow, SHEBA	Eureka	Eureka	SHEBA	SHEBA	SHEBA
Δt = 30 s	Δt = 15 s	Δt = 30 s	Δt = 5 m	Δt = 2 s	Δt = 5 s						
(support)	presence	base	presence, cloud	presence, boundaries							
Macrophysical Properties

- From Shupe et al, 2010, submitted to JAMC
- Cloud Fraction
- Cloud-Height Distribution
- Inter-annual and Inter-site Variability
Distribution of Cloud Heights

- **a)** BARROW
- **b)** EUREKA
- **c)** SHEBA

- **Height [km, AGL]**
- **Month of Year**
- **Fraction [%]**

Legend:
- Red: 50%
- Orange: 40%
- Yellow: 30%
- Green: 20%
- Light Green: 10%
- White: 5%
- Light Blue: 1%
Variability

• Inter-site monthly variability is typically within 10 – 15% of the all-site averages

• Interannual variability at specific sites is less than 15% for any given month, and typically less than 3% for annual cloud fractions
Microphysical Properties

• Examples from Eureka (2006-2009)
 • From MIXCRA retrievals (Turner 2005)

• Preliminary comparisons to SHEBA (1998)

• Long time series at Barrow (up to 2005)
Cloud Phase

Seasonal Cycle

Annual Average

From Eureka
Effective Radius

Liquid Water Droplets

Effective Radius (um)

Ice Crystals

Effective Radius (um)
T-dependence

- Optical depths are generally < 1 (thin)
- Some dependence of tau and cloud fraction on temperature
Site comparison

Microphysical properties are similar at Eureka and SHEBA
Longwave Radiative Effect

• Comparison of Barrow and Eureka

• No broadband shortwave data at Eureka for this time period.
All-sky vs Clear-sky Flux
Longwave Cloud Radiative Forcing

- LWCRF = All-sky flux - Clear-sky flux

Cox (2009)
Longwave Cloud Radiative Forcing

- LWCRF = All-sky flux - Clear-sky flux
Multi-year Average

- Cloud Radiative Forcing in winter is 10 - 30 W m\(^{-2}\) (LW = Total)

- LW Forcing in summer at Barrow is almost twice that at Eureka
Conclusions

• Surface-based observations of Arctic clouds now yield information on spatial, as well as temporal, variations.

• These observations provide valuable comparisons to satellite retrievals and model calculations.

Macrophysical Properties (http://www.aoncadis.org/)

• Cloud fraction across the Western Arctic is high.

• Cloud fraction is highest in late summer and fall, lowest in winter at many sites.

• Arctic clouds primarily occur within the lowest few kilometers in the Western Arctic.

• Inter-annual and inter-site variability is less than about 15%.
Conclusions

Microphysical Properties

- Liquid-only and mixed-phased clouds are common (at Eureka).
- Liquid water droplets are small (7-10 um), while the effective size of the ice crystals are larger (20-30 um).
- There is some temperature dependence on ice fraction (and maybe optical depth).
- Microphysical properties SHEBA and Eureka are similar.

Longwave Radiative Effect

- The longwave CRF at Barrow and SHEBA is almost twice that at Eureka.
ICECAPS (2010-2014)

• ICECAPS = Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit

• New “super-site” at Summit

• Deployment in May 2010