Observing the State of Arctic Sea Ice

S. V. Nghiem1, I. G. Rigor2, P. Clemente-Colón3, D. K. Perovich4, H. Eicken5, J. E. Overland6, T. Markus7, D. G. Barber8, and G. Neumann1

1Jet Propulsion Laboratory, California Institute of Technology, CA
2Applied Physics Laboratory, University of Washington, WA
3U.S. Naval and National Ice Center, MD
4Cold Region Research and Engineering Laboratory, NH
5Geophysical Institute, University of Alaska, AK
7NASA Goddard Space Flight Center, MD
8CEOS, University of Manitoba, Canada

Copyright 2010. All rights reserved.
Arctic Sea Ice Classes

- Perennial ice
- Seasonal ice
- Mixed ice
1970-1999: Decrease of 0.5x10^6 km^2/decade.

Stationary Process

\[F_X(t) = F_X(t+\Delta t) \]

Long-term behavior is usable in forecast

Estimate for 2008: 3.8 million km^2
2000-2008: Decrease of 1.5x10^6 km^2/decade.

Non-Stationary

\[F_X(t) = F_X(t, t+\Delta t) \]

The "Old Wisdom" is not applicable.

Measure in 2008: 1.7 million km^2
‘The Polar Express’
Nghiem et al. GRL, 2007

Ice compression from East to West Arctic

Ice compression into Transpolar Drift (TD)

Acceleration of TD\(^1\) carrying ice out of Arctic via Fram Strait

Warm Atlantic water effectively melted ice in Greenland Sea

\(^1\)Gascard et al., EOS, 2008: Acceleration of the TD
The Polar Express in 2007

Nghiem/6
Animation of sea ice
20 frames per second

SEA ICE CLASSES
- Seasonal
- Mixed ice
- Perennial
- Melt

2008-09-12
Products for Observing State of Arctic Sea Ice

- Sea ice melt detection by active and passive microwave sensors.
- Experimental melt product in Seasonal Ice Zone Observing Network (SIZONet).
- Composite sea ice product from scatterometer and synthetic aperture radar data.
Sea Ice Melt Detection and Albedo Transition
Comparison with C-ICE observations in the Parry Channel

[Graph showing backscatter, air temperature, and albedo changes over time in the Parry Channel (74.43N, 92.6W)].
Seasonal Ice Zone Observing Network
Experimental Product for Melt Detection
SAR signatures of various ice classes for sea ice classification

References:
Summary

- Non-stationary process of decrease in the extent of perennial sea ice.
- Loss rate tripled in decade of 2000s compared to that in 1970s-1990s.
- The Polar Express: Dynamic effects are important in contributing to perennial sea ice loss.
- The extent of perennial ice extent remained low in 2009.
- More products of observing state of Arctic sea ice: Melt, SIZONet, composite QS/GMM.