Pan-Svalbard Assessment of Decadal-scale Climate Forcing and Ecosystem Variation: Evidence from Bivalve Growth Rates

Michael L. Carroll
Akvaplan-niva, Tromsø Norway

B. Levin, W.G. Ambrose, G. Henkes, W. Locke - Bates College, USA
H. Hop – Norwegian Polar Institute
P. Renaud – Akvaplan-niva
From Variability to Change: “Trees of the Sea”

- Bivalves record and preserve biological and environmental information in the hard parts of their bodies
- Allows us to search for patterns and to reconstruct linkages between climatic phenomena and bio-responses
 - Scales of days to centuries

Information from shells

- Variations in growth rates
 - Relationships to environmental drivers
- Environmental conditions from constituents imbedded in the shell
 - Temperature, salinity, food sources
Objective

Identify growth rates, interannual growth patterns, and relationships between environmental forcing and biological responses of Serripes groenlandicus from locations spanning a wide range of environmental conditions of Svalbard and the Barents Sea.
- 30 year lifespan
- Circumpolar
- Soft-sediment dweller
- Suspension feeder
- Distinct external growth bands

Serripes groenlandicus

Barents Sea

Svalbard, Norway
Sampling Locations and Sample Material

- 11 collection sites between 1996-2009
- Different env. settings
- 3-69 samples/site
- 260 total samples
Absolute Growth Rates

Size (mm) vs. Age (yr)

- Hopen Bank
- Storfjorden
- Adventfjord
- Kongsfjord
- Forelands Sundet
- Groenfjord
- Ripfjord
- Smeerenburgfjord
- Moffen
- Western Bank
- Liefdefjord
Site Variation in Absolute Growth

ANOVA, P<0.001

Sampling sites
Atlantic currents
Polar front
Arctic currents

Hopen Island
Bear Island

SM LF FS WB MO GF KF RF AF HB SF

100 m 250 m 500 m 1000 m 2000 m 2500 m
Warm shelf water from the West Spitsbergen Current (WSC)
Standardized Growth Index

Sample from White Sea 1946-1968

Raw growth increments → Detrend for ontogenetic changes → Standardized Growth Index
Standard Growth Index
All Sites (n=260)
SGI vs. Environmental Parameters

<table>
<thead>
<tr>
<th>Site</th>
<th>ACRI</th>
<th>Kola Temp</th>
<th>WSC Temp</th>
<th>Ny Å Temp</th>
<th>Ny Å Precip</th>
<th>Hopen Precip</th>
<th>Max Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td>+++</td>
<td></td>
<td>---</td>
</tr>
</tbody>
</table>
SGI related to environmental drivers

Rijpfjord SGI vs. WSC Temperature

Kongsfjord SGI vs. Kola Temperature

Spitsbergen Bank SGI vs. Arctic Climate Regime Index

ALL SGI vs. Arctic Climate Regime Index
Relationship to Environmental Forcing - Multiple Regression

<table>
<thead>
<tr>
<th>Site</th>
<th>Equation</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rijpfjord</td>
<td>SGI= 1.18 WSC T – 0.003 Ice BS + 0.44</td>
<td>0.69</td>
</tr>
<tr>
<td>Kongsfjord</td>
<td>SGI= 0.19 Kola T + 0.08 ACRI + 0.04 Ny Å pressure +56.0</td>
<td>0.29</td>
</tr>
<tr>
<td>Spitsbergen Bank</td>
<td>SGI= 0.10ACRI + 0.24 Kola T + 0.32 Max Ice – 4.91</td>
<td>0.62</td>
</tr>
<tr>
<td>All Sites</td>
<td>SGI= 0.054ACRI+ 0.01 Ice Free days +0.88</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Summary and Conclusions

• Absolute growth rate varies spatially in the region - ultimately regulated by water mass characteristics (Atlantic water)
• Similarity in overall growth rate does not correspond to similarity in temporal growth patterns (interannual variability)
• Temporal patterns in growth rates are influenced by both large scale environmental factors, and their local manifestations
• Physical variables regulate bivalve growth through their influence on the primary production and food supply to the benthos
Funding Sources:

- Norwegian Research Council
 - NORKLIMA
 - U.S.-Norway Bilateral Cooperation
 - IPY, NESSAR
- U.S. National Science Foundation
- Sigma Xi
- Hughes Foundation (Bates College)
- Statoil