Five Years of Land Cover Reflectance in a Large Scale Hydrological Manipulation in an Arctic Tundra Landscape

Santonu Goswami
John A. Gamon
Craig E. Tweedie

1Environmental Science and Engineering
University of Texas at El Paso

2Dept. of Earth and Atmospheric Sciences
University of Alberta
Importance of Surface Hydrology (Soil Moisture) in ecosystem structure and function

- Many observed and modeled change responses of arctic terrestrial ecosystems are related to surface hydrology:
 - Surface energy budgets (Chapin et al. 2005, Euskircken et al. 2007)
 - Geomorphic processes (Lawrence and Slater 2005, McNamara and Kane 2009)
 - Provision of ecosystem goods and services (Milennium Ecosystem Assessment)
 - Plant phenology and response to warming (Arft et al. 1999, Walker et al. 2006)
Plants as an indicator of change

- Detecting biotic responses to a changing environment is essential for understanding the consequences of global change.
- Plants can work as effective indicators of
 - changing conditions and, depending on the nature of the change,
 - respond by increasing or decreasing amounts of green-leaf biomass, chlorophyll, and water content.
 - important effects on ecosystem processes such as NPP and nutrient cycling.
- Plant phenology is detectable using remote sensing technologies and therefore scaleable over space and time (e.g. NDVI).
Study Site - Biocomplexity Experiment, Barrow, Alaska
Experimental Setup: Biocomplexity

Experiment

- Large-scale Hydrological Manipulation experiment to study the effect of varying Soil Moisture on ecosystem Carbon Balance in the Arctic
The Tram System
The Tram System
The Tram System
The Tram System

Near surface remote sensing technology

- Measurements are made at every meter along each of the three 300 meter tramlines (precise and repeatable)
- Collects hyperspectral data in the vis-nir region and digital images of vegetation
- More than 200,000 data files collected in 5 years
- Has the ability to carry various sensors packages
- Can be used to study change in phenology, sun angle effect on vegetation etc
- Standardized sampling design is part of a larger effort (SpecNet) to compare ecosystem responses using a combination of spectral reflectance and flux measurements

Tramline system in the biocomplexity experiment is the largest ground based spectral data monitoring system that we are aware of internationally
Measurement of Reflectance

- **Reflectance**

 \[\frac{I_{\text{Target}}}{I_{\text{Downwelling}}} = \text{Radiance/Irradiance} \]

- **Reflectance correction**

 \[\left(\frac{R_{\text{Target}}}{R_{\text{Downwelling}}} \right) \times \left(\frac{R_{\text{Downwelling}}}{R_{\text{Panel}}} \right) \]

- **NDVI (Normalized Difference Vegetation Index) calculation**

 \[\frac{(R_{800} - R_{680})}{(R_{800} + R_{680})} \]

- Also measures water table depth, thaw depth.
Questions being asked in this study

• How does land-surface phenology (i.e. surface reflectance properties) change inter-annually?

• Is there any detectable effect of experimental treatment (flooding and draining) on surface reflectance?
Transition Throughout the Season

1st Week of June

3rd Week of June

1st Week of August
Inter-annual variability of NDVI in the treatment areas for pre-treatment years (2005, 2006, 2007) and treatment years (2008 and 2009)
Comparison of inter-annual variability of NDVI to water table depth and thaw depth in the flooded section for 2007 (pre-treatment) and 2008 and 2009 (treatment years).
Comparison of inter-annual variability of NDVI to water table depth and thaw depth in the drained section for 2007 (pre-treatment) and 2008 and 2009 (treatment years)
Comparison of inter-annual variability of NDVI to water table depth and thaw depth in the control section for 2007 (pre-treatment) and 2008 and 2009 (treatment years)
Standing surface water has a significant effect on reflectance spectra.

This has profound effect on the NDVI values.
The spectral range (400-1000nm) offers the ability to detect several things, including water. Using a spectral index (NDSWI) capable of capturing multi-dimensional surface hydrological dynamics can improve the sampling capabilities of this system.

NDSWI (Normalized Difference Surface Water Index) =

$$\frac{(R_{490} - R_{1000})}{(R_{490} + R_{1000})}$$

Quickbird 2002 Quickbird 2008 Goswami et. al – submitted, JGR Biogeosciences
Summary and Conclusion

- Changes in vegetation cover during the growing season was clearly detectable using surface reflectance.
- Seasonal patterns of the NDVI values showed some differences with flooding. The flooded section showed bigger differences than the drained section.
- The seasonal patterns in NDVI was least different for the control section among the years.
- NDVI values were compromised by varying water cover (among other things), so simultaneously tracking NDVI and NDSWI might be a better approach in this landscape.
- Alternatively, other methods like Spectral Mixture Analysis can probably help here.
Acknowledgements

• National Science Foundation (ASSP-0421588).
• Barrow Arctic Science Consortium.
• CH2M Hill Polar Field Services
• Ukpeagvik Inupiat Corporation – landholder
• Spectral Network.
• UTEP Cybershare Center of Excellence.
• Sergio Vargas, Perry Houser, Christian Andresen, Adrian Aguirre, Sandra Villarreal, Ryan Cody, David Lin.
• Systems Ecology Laboratory, University of Texas at El Paso.