Quantifying Future Changes in High-Latitude Methane Emissions Under Regional Climate Change Uncertainty

Xiang Gao1, C. Adam Schlosser1, Andrei Sokolov1, and Katey Walter2,

1MIT Joint Program on the Science and Policy of Global Change
2University of Alaska
Background:

Permanently frozen soils in the arctic are susceptible to widespread thaw and degradation (via thermokarst lake formation and wetland expansion) due to rising surface temperatures. Permafrost thaw, particularly in the icy, organic-rich region of yedoma, is expected to release a large amount of methane, which could be potentially significant to the global carbon cycle and also dramatically alter the hydrological cycle and lake and wetland dynamics.

Tested Hypothesis:

There exists a climate warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and/or wetland expansion). These may initiate a strong, positive feedback to global climate warming.
Community Land Model (CLM)

Permafrost and Lake Extent

- **PERMAFROST**: Grid in which bottom soil temperature (~3M depth) remains below 0°C for 24 consecutive months.

- **LAKE EXTENT DIAGNOSTIC**: saturated grid area - fractional area of grid in which water table is at surface.
Offline Simulation Experiments with CLM

- **Baseline Simulations (1950~2000):** Use observationally-based, bias-corrected forcing – CAS, GOLD, and NCC

- **Simulations with IGSM atmospheric forcing:**
 - Climatological projection of precipitation (GPCP), temperature (CRU), and radiation across latitude band and kept fixed
 - IGSM atmosphere with various Transient Climate Response (TCR), emission scenarios (from EPPA), and policy

- **CLM Version 3.5 @2°x2.5° spatial resolution**
Simulations Experiment with IGSM forcing

<table>
<thead>
<tr>
<th>TCR</th>
<th>Emission</th>
<th>Time frame</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (7.0°C)</td>
<td>Median</td>
<td>1991 ~ 2100</td>
<td>Comparable to BAU A2 in IPCC AR4</td>
</tr>
<tr>
<td>Median (5.1°C)</td>
<td>Median</td>
<td>1948 ~ 2000*</td>
<td>* To compared with baseline simulations</td>
</tr>
<tr>
<td>Low (3.8°C)</td>
<td></td>
<td>1991 ~ 2100</td>
<td></td>
</tr>
<tr>
<td>Median (5.1°C)</td>
<td>High</td>
<td>1991 ~ 2100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With Policy

<table>
<thead>
<tr>
<th>TCR*</th>
<th>Emission</th>
<th>Time frame</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Stabilization</td>
<td>1991 ~ 2100</td>
<td>Comparable to B2 in IPCC AR4</td>
</tr>
<tr>
<td></td>
<td>@ 450PPM</td>
<td></td>
<td>* TCR is different from that in no policy</td>
</tr>
</tbody>
</table>
Consistency Between Forcings
Trend in Near-Surface Permafrost (PF)

Fractional Change of 45°N Permafrost area with respect to 2010

Simulated End of 20th Century PF extent ~ 10x10^6 km^2; Extent of PF degradation for HTCR larger than Lawrence et al. (2008), which used CLM forced by A1B CCSM.
Trend in Saturated Area

Relative Change in Saturated Area for 45N North with respect to 2010
Change in Methane Emission
(2091~2100 minus 2001~2010)

<table>
<thead>
<tr>
<th></th>
<th>LTCR</th>
<th>MTCR</th>
<th>HTCR</th>
<th>LEM</th>
<th>HEM</th>
<th>L450</th>
<th>H450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>ΔA</td>
<td>ΔE</td>
<td>ΔA</td>
<td>ΔE</td>
<td>ΔA</td>
<td>ΔE</td>
<td>ΔA</td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>0.26</td>
<td>0.44</td>
<td>0.29</td>
<td>0.58</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>0.24</td>
<td>0.55</td>
<td>0.36</td>
<td>0.16</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>0.11</td>
<td>0.27</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Y</td>
<td>12.9</td>
<td>1.93</td>
<td>16.0</td>
<td>2.40</td>
<td>19.3</td>
<td>2.90</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td>2.80</td>
<td>4.34</td>
<td>0.65</td>
<td>8.24</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.34</td>
<td>0.65</td>
<td>8.24</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2.19</td>
<td>2.69</td>
<td>3.28</td>
<td>2.19</td>
<td>3.17</td>
<td>0.76</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Y: Yedoma region; **N-Y**: Non-Yedoma region; **T**: Yedoma + Non-Yedoma region – assuming all region is lake-based (no wetland);

ΔA: Change in saturated area between two periods; unit is 1.0E+10 m2

ΔE: Change in methane emission between two periods; unit is Tg

Ebullition flux rates for yedoma and non-yedoma lakes take the values of 66±17 and 15±2 gCH4$m^{-2}$$yr^{-1}$ (from Katey Walter)

LTCR, **MTCR**, and **HTCR** are different TCR with median emission;

LEM and **HEM** are different emission with median TCR

L450 and **H450** are different TCR for stabilization of 450 ppm.
• With no policy applied, under range of uncertainty in transient climate response, extent of permafrost degradation occurs anywhere between 70% (Low TCR) to 90% (high TCR). But this sensitivity is not evident until 2050.

• Increase in saturated area at high latitudes, with a range of 20% to 30% for the low and high TCR, respectively, but difference is not evident until later part of this century.

• The degree of the impact from the changing TCR and emission (low versus high) is similar when no policy is applied.

• 450ppm stabilization can well prevent the extent of permafrost degradation anywhere between 20% (Low TCR) to 30% (high TCR) and the increase of saturated area from 5% (low TCR) and 15% (high TCR).

• Though increase in methane emission (~ 3Tg) from the expanded saturated area with HTCR or high emission scenarios is in small quantities, compared with total natural (270 Tg) and total anthropogenic (~300 Tg), it could be potentially important if stabilization of 450 ppm policy is applied.
• Looking forward to CLM4 (with upgrades in soil carbon and permafrost treatment)
• Continue evaluation of CLM simulations with climatologically projected IGSM forcings.
• Regional climate change uncertainty: simulations based on AR4 patterns underway.
• Build ensembles that span more no-policy and policy IGSM simulations.
• Updated thermokarst emissions from field-based surveys and flux measurements, which will provide information specific to lake types and regions (Katey Walter by August 2010).