Increased Freshwater and Biogenic Fluxes: The flip side of Arctic sea-ice retreat

Robert Newton, Stephanie Pfirman, Bruno Tremblay
Charles Fowler, Ray Sambrotto, Peter Schlosser, Jim Swift

State of the Arctic, Miami, 17 Mar 2010
Sea Ice Concentration
Nimbus-7, 1979-2007

Summer ice extent retreating rapidly:

Mean sea-ice concentration
September, 1987

Mean sea-ice concentration
September, 2007
Seasonal Ice Zone (SIZ): complement of ice changes:
Ice concentration: Mar – Aug

1988

2007

State of the Arctic, Miami, 17 Mar 2010

Newton, et al.
Want to think about two implications:

• **Freshwater Flux:**
 - Dominates density gradients,
 - Sets stratification,
 - Protecting ice from upwelling heat,
 - Modulating biological productivity,
 - And deep water formation rates,

• **Nutrient fluxes:**
 - Critical to productivity
 - Limited by light and stratification
 - So modulated by sea-ice formation and melt
 - Important tracer for circulation and water masses
In the context of modern hydrographic cruises:

AOS (Oden) 2005

AOS (Polarstern) 1994

State of the Arctic, Miami, 17 Mar 2010
Newton, et al.
Surface circulation and river basins

Freshwater Sources:

- River runoff
- Bering Strait inflow (N. Pacific is fresher than N. Atlantic)
- Local precipitation
- Annual sea-ice cycle (asymmetry between fate of melt and freeze)
Coastal ice circulation from buoys:
EEZ ice flows from satellite images:
Ice transports fresh water (among other things):

- Changes in summer sea-ice melt locations should change the distribution of salinity and density gradients.
- Increasing area of the seasonal ice zone (SIZ) should increase total sea ice formation.
- A stronger sea ice pump (fresh water up, brine down) should increase stratification.
- Changing density distributions should impact on large-scale circulation ... but how?
To evaluate impact of sea ice, need to separate sea ice meltwater and brines from other fresh/salty water sources:

\[
f_a + f_p + f_r + f_i = 1,
\]

\[
f_a S_a + f_p S_p + f_r S_r + f_i S_i = S_m,
\]

\[
f_a \delta^{18}O_a + f_p \delta^{18}O_p + f_r \delta^{18}O_r + f_i \delta^{18}O_i = \delta^{18}O_m,
\]

\[
f_a PO_4^{*a} + f_p PO_4^{*p} + f_r PO_4^{*r} + f_i PO_4^{*i} = PO_4^{*m},
\]

Note that a nutrient parameter is required to identify Bering Strait inflow (Pacific Water).
Basic water mass de-convolution technique: matrix inversion

- System of tracer equations:
 - $E_f = d$
 - $f = E \backslash d$
- Coefficients in E: end-member values
- d are the sample measurements.
- Can be exact ($m = n =$ number of measured parameters) or
- Overdetermined (solved by least-squares minimization of a cost function).
Nutrient tracers are not conservative. Redfield combinations minimize impact of photosynthesis and respiration:

- PO* (Ekwurzel, Schlosser, Newton, Chen)
- N* (Newton)
- NO (Wallace)
- NO/PO (Wallace)
- Empirical N/P (Jones, Anderson, Matsumoto-Kawai)
Physical properties and water mass fractions from AOS-05

Observations

FW Components and water column sum

State of the Arctic, Miami, 17 Mar 2010

Newton, et al.
Water mass fractions in 2005 and 1994 were comparable ...
As long as one uses the same end-member parameters and values ...
10.0 - 6.5 = 3.5 m

(-5) - (-6) = 1 m

10.5 - 8.0 = 2.5 m

3.5 - 3.5 = 0.0 m

Makarov Basin
2005 - 1994
Difference

State of the Arctic, Miami, 17 Mar 2010
Newton, et al.
Increased stratification?

- There is a dramatic freshening of the upper layers over the Makarov Basin (3.5 m freshwater anomaly, 2004 – 1994).
- Increased sea-ice meltwater flux is a significant component (~ 1/3).
- But meteoric waters (runoff and local snowfall), driven mainly by changes in wind stress (Ekman transport) continue to dominate the anomalies.
- No convincing evidence of increased salinity in the halocline; residence times ~ 15 years implies this should follow the surface anomalies.
Nutrients on the AOS-2005

State of the Arctic, Miami, 17 Mar 2010

Newton, et al.
AOS-05 N-P data:
(well fit to empirical end-members)
But implication is: significant processing on the Arctic shelves.

Bering Strait Inflow: reasonable average of shallow Bering Sea, and intermediate between Atlantic and Pacific N/P relationships.

Transformation from BSI to the “Pacific” end member requires denitrification and/or Phosphate addition in the Chukchi Sea.
So nutrient patterns in the Arctic halocline reflect indigenous (Arctic) processing:
For process rates we need a clock:
Halocline nutrient concentrations asymptote with Tr/He age:

Nitrate Phosphate

(So implied export productivity varies …
Upper halocline: ~3 gC/m²; Lower halocline: ~6 gC/m²)
The Halocline nutrient system appears supply limited ... and the supply may be increasing:
MODIS-A: Change in Chlorophyll in the E. Siberian Sea, 2007 - 2003:
Fractional change in ChlA:
1 = areas of new production
Increased nutrient flux?

• Nutrient regeneration in the Canadian Basin halocline appears to be limited by POC supply; current (~ last 20 years) limits: 16 mMol N/m3.

• Redfield-derived (using C/N/P and Tr-age) POC export: upper halocline ~ 3gC/m2; lower h.c.: ~ 6gC/m2; mainly from production on shelves.

• Supply of organic material is increasing, perhaps dramatically (30% step in 2006), as the growing season lengthens and the water column is more stratified. Largest absolute increases on the shelves, which feed the halocline.

• New regions of productivity over the deep Canadian Basin ➔ greater vertical flux.