Changes in Ecosystem Production in a High Arctic Semi Desert During the Growing Season

Sarah H. Svendsen, Casper T. Christiansen and Anders Michelsen
Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Oester Farimagsgade 2D, Copenhagen K, DK-1353, Denmark
Niels M. Schmidt
Department of Arctic Environment, NERI, University of Aarhus, Frederiksborgvej 399, PO Box 358, Roskilde, DK-4000, Denmark

Introduction
As a response to the global warming General Circulation Models (GCMs) predict that precipitation will increase at high latitudes. These conditions can increase the mineralization and potentially lead to higher soil nutrient levels. If Ecosystem Respiration (ER) is affected more than gross primary production (GEP) Net Ecosystem Production (NEP) will be negative and CO₂ will be released to the atmosphere creating a positive feedback to the global warming. If GEP is affected most strongly NEP will be positive and atmospheric CO₂ will be stored in vegetation and soil creating a negative feedback to the global warming. Water addition to a high arctic semi-desert was previously shown to increase microbial biomass and activity in the short term (Illeris et al. 2003). Here we explore the long-term effects on C balance after more than a decade of enhanced water addition.

Methods
CO₂ fluxes in a high arctic semi desert at Zackenberg Research Station in Northeast Greenland were measured weekly throughout the growing season of 2009 using infrared gas analyser (EGM-4) (Arndal et al. 2009). In order to simulate predicted future rainfall pattern and possible enhanced deposition field plots were treated with water (W), nitrogen (N) and phosphorus (P) in a fully factorial design. Water was added weekly in July and August from 1996 to 2009 corresponding to at least a doubling of the growing season precipitation. N and P were added once in 1996, 1997 and 2007. All treatments were treated with water (W), nitrogen (N) and phosphorus (P) in a fully factorial design. Level of significance of treatment effects and interactions using ANOVAs: + P < 0.1, * P< 0.05 , ** P < 0.01, *** P < 0.001.

Results and discussion
Methods
CO₂ fluxes in a high arctic semi desert at Zackenberg Research Station in Northeast Greenland were measured weekly throughout the growing season of 2009 using infrared gas analyser (EGM-4) (Arndal et al. 2009). In order to simulate predicted future rainfall pattern and possible enhanced deposition field plots were treated with water (W), nitrogen (N) and phosphorus (P) in a fully factorial design. Water was added weekly in July and August from 1996 to 2009 corresponding to at least a doubling of the growing season precipitation. N and P were added once in 1996, 1997 and 2007. All treatments were treated with water (W), nitrogen (N) and phosphorus (P) in a fully factorial design. Level of significance of treatment effects and interactions using ANOVAs: + P < 0.1, * P< 0.05 , ** P < 0.01, *** P < 0.001.

Results show that water addition had a positive effect on ER early in the growing season (figure 1A), however not strong enough to create a significant negative effect on NEP (figure 1C). GEP did not show any direct effect of water addition in any of the measurements indicating that respiration more than photosynthesis is limited by water. Water had a positive effect on NEP on 2 out of 8 days (figure C). Increased precipitation can therefore lead to a net uptake of CO₂ from the atmosphere into vegetation and soil, creating a negative feedback to the global warming.

Figure 1. Weekly measurements of Ecosystem Respiration, ER (A), Gross Primary Production, GEP (B) and Net Ecosystem Production, NEP (C) in a high arctic semi desert in Northeast Greenland with applications of nitrogen (N), phosphorus (P) and water (W) in a fully factorial design. Level of significance of treatment effects and interactions using ANOVAs: + P < 0.1, * P< 0.05 , ** P < 0.01, *** P < 0.001.